Operator Mixing in N = 4 Sym: the Konishi Anomaly Revisited

نویسنده

  • S. Stanev
چکیده

In the context of the superconformal N = 4 SYM theory the Konishi anomaly can be viewed as the descendant K10 of the Konishi multiplet in the 10 of SU(4), carrying the anomalous dimension of the multiplet. Another descendant O10 with the same quantum numbers, but this time without anomalous dimension, is obtained from the protected half-BPS operator O20′ (the stress-tensor multiplet). Both K10 and O10 are renormalized mixtures of the same two bare operators, one trilinear (coming from the superpotential), the other bilinear (the so-called “quantum Konishi anomaly”). Only the operator K10 is allowed to appear in the right-hand side of the Konishi anomaly equation, the protected one O10 does not match the conformal properties of the left-hand side. Thus, in a superconformal renormalization scheme the separation into “classical” and “quantum” anomaly terms is not possible, and the question whether the Konishi anomaly is one-loop exact is out of context. The same treatment applies to the operators of the BMN family, for which no analogy with the traditional axial anomaly exists. We illustrate our abstract analysis of this mixing problem by an explicit calculation of the mixing matrix at level g4 (“two loops”) in the supersymmetric dimensional reduction scheme. UMR 5108 associée à l’Université de Savoie

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non - protected operators in N = 4 SYM and multiparticle states of AdS 5 SUGRA

We study a class of non-protected local composite operators which occur in the R symmetry singlet channel of the OPE of two stress-tensor multiplets in N = 4 SYM. At tree level these are quadrilinear scalar dimension four operators, two single-traces and two double-traces. In the presence of interaction, due to a non-trivial mixing under renormalization, they split into linear combinations of c...

متن کامل

Wrapping Interactions and the Konishi Operator

We present a calculation of the four-loop anomalous dimension of the SU(2) sector Konishi operator in N = 4 SYM, as an example of “wrapping” corrections to the known result for long operators. We use the known dilatation operator at four loops acting on long operator, and just calculate those diagrams which are affected by the change from operator length L > 4 to L = 4. We find that the answer ...

متن کامل

EFI - 02 - 49 SL ( 2 , Z ) Multiplets in N = 4 SYM Theory

We discuss the action of SL(2,Z) on local operators in D = 4, N = 4 SYM theory in the superconformal phase. The modular property of the operator’s scaling dimension determines whether the operator transforms as a singlet, or covariantly, as part of a finite or infinite dimensional multiplet under the SL(2,Z) action. As an example, we argue that operators in the Konishi multiplet transform as pa...

متن کامل

SL ( 2 , Z ) multiplets in N = 4 SYM theory

We discuss the action of SL(2, Z) on local operators in D = 4, N = 4 SYM theory in the superconformal phase. The modular property of the operator’s scaling dimension determines whether the operator transforms as a singlet, or covariantly, as part of a finite or infinite dimensional multiplet under the SL(2, Z) action. As an example, we argue that operators in the Konishi multiplet transform as ...

متن کامل

strong-coupling corrections to dimension of Konishi operator

We consider leading strong coupling corrections to the energy of the lightest massive string modes in AdS5 × S5 , which should be dual to members of the Konishi operator multiplet in N = 4 SYM theory. This determines the general structure of the strongcoupling expansion of the anomalous dimension of the Konishi operator. We use 1-loop results for several semiclassical string states to extract i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005